3.3.25 \(\int \frac {(e+f x) \sinh (c+d x)}{a+b \sinh (c+d x)} \, dx\) [225]

Optimal. Leaf size=220 \[ \frac {e x}{b}+\frac {f x^2}{2 b}-\frac {a (e+f x) \log \left (1+\frac {b e^{c+d x}}{a-\sqrt {a^2+b^2}}\right )}{b \sqrt {a^2+b^2} d}+\frac {a (e+f x) \log \left (1+\frac {b e^{c+d x}}{a+\sqrt {a^2+b^2}}\right )}{b \sqrt {a^2+b^2} d}-\frac {a f \text {PolyLog}\left (2,-\frac {b e^{c+d x}}{a-\sqrt {a^2+b^2}}\right )}{b \sqrt {a^2+b^2} d^2}+\frac {a f \text {PolyLog}\left (2,-\frac {b e^{c+d x}}{a+\sqrt {a^2+b^2}}\right )}{b \sqrt {a^2+b^2} d^2} \]

[Out]

e*x/b+1/2*f*x^2/b-a*(f*x+e)*ln(1+b*exp(d*x+c)/(a-(a^2+b^2)^(1/2)))/b/d/(a^2+b^2)^(1/2)+a*(f*x+e)*ln(1+b*exp(d*
x+c)/(a+(a^2+b^2)^(1/2)))/b/d/(a^2+b^2)^(1/2)-a*f*polylog(2,-b*exp(d*x+c)/(a-(a^2+b^2)^(1/2)))/b/d^2/(a^2+b^2)
^(1/2)+a*f*polylog(2,-b*exp(d*x+c)/(a+(a^2+b^2)^(1/2)))/b/d^2/(a^2+b^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.28, antiderivative size = 220, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 6, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {5676, 3403, 2296, 2221, 2317, 2438} \begin {gather*} -\frac {a f \text {Li}_2\left (-\frac {b e^{c+d x}}{a-\sqrt {a^2+b^2}}\right )}{b d^2 \sqrt {a^2+b^2}}+\frac {a f \text {Li}_2\left (-\frac {b e^{c+d x}}{a+\sqrt {a^2+b^2}}\right )}{b d^2 \sqrt {a^2+b^2}}-\frac {a (e+f x) \log \left (\frac {b e^{c+d x}}{a-\sqrt {a^2+b^2}}+1\right )}{b d \sqrt {a^2+b^2}}+\frac {a (e+f x) \log \left (\frac {b e^{c+d x}}{\sqrt {a^2+b^2}+a}+1\right )}{b d \sqrt {a^2+b^2}}+\frac {e x}{b}+\frac {f x^2}{2 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((e + f*x)*Sinh[c + d*x])/(a + b*Sinh[c + d*x]),x]

[Out]

(e*x)/b + (f*x^2)/(2*b) - (a*(e + f*x)*Log[1 + (b*E^(c + d*x))/(a - Sqrt[a^2 + b^2])])/(b*Sqrt[a^2 + b^2]*d) +
 (a*(e + f*x)*Log[1 + (b*E^(c + d*x))/(a + Sqrt[a^2 + b^2])])/(b*Sqrt[a^2 + b^2]*d) - (a*f*PolyLog[2, -((b*E^(
c + d*x))/(a - Sqrt[a^2 + b^2]))])/(b*Sqrt[a^2 + b^2]*d^2) + (a*f*PolyLog[2, -((b*E^(c + d*x))/(a + Sqrt[a^2 +
 b^2]))])/(b*Sqrt[a^2 + b^2]*d^2)

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2296

Int[((F_)^(u_)*((f_.) + (g_.)*(x_))^(m_.))/((a_.) + (b_.)*(F_)^(u_) + (c_.)*(F_)^(v_)), x_Symbol] :> With[{q =
 Rt[b^2 - 4*a*c, 2]}, Dist[2*(c/q), Int[(f + g*x)^m*(F^u/(b - q + 2*c*F^u)), x], x] - Dist[2*(c/q), Int[(f + g
*x)^m*(F^u/(b + q + 2*c*F^u)), x], x]] /; FreeQ[{F, a, b, c, f, g}, x] && EqQ[v, 2*u] && LinearQ[u, x] && NeQ[
b^2 - 4*a*c, 0] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3403

Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]), x_Symbol] :> Dist[2,
Int[(c + d*x)^m*(E^((-I)*e + f*fz*x)/((-I)*b + 2*a*E^((-I)*e + f*fz*x) + I*b*E^(2*((-I)*e + f*fz*x)))), x], x]
 /; FreeQ[{a, b, c, d, e, f, fz}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 5676

Int[(((e_.) + (f_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Sym
bol] :> Dist[1/b, Int[(e + f*x)^m*Sinh[c + d*x]^(n - 1), x], x] - Dist[a/b, Int[(e + f*x)^m*(Sinh[c + d*x]^(n
- 1)/(a + b*Sinh[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {(e+f x) \sinh (c+d x)}{a+b \sinh (c+d x)} \, dx &=\frac {\int (e+f x) \, dx}{b}-\frac {a \int \frac {e+f x}{a+b \sinh (c+d x)} \, dx}{b}\\ &=\frac {e x}{b}+\frac {f x^2}{2 b}-\frac {(2 a) \int \frac {e^{c+d x} (e+f x)}{-b+2 a e^{c+d x}+b e^{2 (c+d x)}} \, dx}{b}\\ &=\frac {e x}{b}+\frac {f x^2}{2 b}-\frac {(2 a) \int \frac {e^{c+d x} (e+f x)}{2 a-2 \sqrt {a^2+b^2}+2 b e^{c+d x}} \, dx}{\sqrt {a^2+b^2}}+\frac {(2 a) \int \frac {e^{c+d x} (e+f x)}{2 a+2 \sqrt {a^2+b^2}+2 b e^{c+d x}} \, dx}{\sqrt {a^2+b^2}}\\ &=\frac {e x}{b}+\frac {f x^2}{2 b}-\frac {a (e+f x) \log \left (1+\frac {b e^{c+d x}}{a-\sqrt {a^2+b^2}}\right )}{b \sqrt {a^2+b^2} d}+\frac {a (e+f x) \log \left (1+\frac {b e^{c+d x}}{a+\sqrt {a^2+b^2}}\right )}{b \sqrt {a^2+b^2} d}+\frac {(a f) \int \log \left (1+\frac {2 b e^{c+d x}}{2 a-2 \sqrt {a^2+b^2}}\right ) \, dx}{b \sqrt {a^2+b^2} d}-\frac {(a f) \int \log \left (1+\frac {2 b e^{c+d x}}{2 a+2 \sqrt {a^2+b^2}}\right ) \, dx}{b \sqrt {a^2+b^2} d}\\ &=\frac {e x}{b}+\frac {f x^2}{2 b}-\frac {a (e+f x) \log \left (1+\frac {b e^{c+d x}}{a-\sqrt {a^2+b^2}}\right )}{b \sqrt {a^2+b^2} d}+\frac {a (e+f x) \log \left (1+\frac {b e^{c+d x}}{a+\sqrt {a^2+b^2}}\right )}{b \sqrt {a^2+b^2} d}+\frac {(a f) \text {Subst}\left (\int \frac {\log \left (1+\frac {2 b x}{2 a-2 \sqrt {a^2+b^2}}\right )}{x} \, dx,x,e^{c+d x}\right )}{b \sqrt {a^2+b^2} d^2}-\frac {(a f) \text {Subst}\left (\int \frac {\log \left (1+\frac {2 b x}{2 a+2 \sqrt {a^2+b^2}}\right )}{x} \, dx,x,e^{c+d x}\right )}{b \sqrt {a^2+b^2} d^2}\\ &=\frac {e x}{b}+\frac {f x^2}{2 b}-\frac {a (e+f x) \log \left (1+\frac {b e^{c+d x}}{a-\sqrt {a^2+b^2}}\right )}{b \sqrt {a^2+b^2} d}+\frac {a (e+f x) \log \left (1+\frac {b e^{c+d x}}{a+\sqrt {a^2+b^2}}\right )}{b \sqrt {a^2+b^2} d}-\frac {a f \text {Li}_2\left (-\frac {b e^{c+d x}}{a-\sqrt {a^2+b^2}}\right )}{b \sqrt {a^2+b^2} d^2}+\frac {a f \text {Li}_2\left (-\frac {b e^{c+d x}}{a+\sqrt {a^2+b^2}}\right )}{b \sqrt {a^2+b^2} d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.48, size = 163, normalized size = 0.74 \begin {gather*} \frac {x (2 e+f x)}{2 b}-\frac {a \left (d (e+f x) \left (\log \left (1+\frac {b e^{c+d x}}{a-\sqrt {a^2+b^2}}\right )-\log \left (1+\frac {b e^{c+d x}}{a+\sqrt {a^2+b^2}}\right )\right )+f \text {PolyLog}\left (2,\frac {b e^{c+d x}}{-a+\sqrt {a^2+b^2}}\right )-f \text {PolyLog}\left (2,-\frac {b e^{c+d x}}{a+\sqrt {a^2+b^2}}\right )\right )}{b \sqrt {a^2+b^2} d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((e + f*x)*Sinh[c + d*x])/(a + b*Sinh[c + d*x]),x]

[Out]

(x*(2*e + f*x))/(2*b) - (a*(d*(e + f*x)*(Log[1 + (b*E^(c + d*x))/(a - Sqrt[a^2 + b^2])] - Log[1 + (b*E^(c + d*
x))/(a + Sqrt[a^2 + b^2])]) + f*PolyLog[2, (b*E^(c + d*x))/(-a + Sqrt[a^2 + b^2])] - f*PolyLog[2, -((b*E^(c +
d*x))/(a + Sqrt[a^2 + b^2]))]))/(b*Sqrt[a^2 + b^2]*d^2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(439\) vs. \(2(198)=396\).
time = 1.29, size = 440, normalized size = 2.00

method result size
risch \(\frac {f \,x^{2}}{2 b}+\frac {e x}{b}+\frac {2 a e \arctanh \left (\frac {2 b \,{\mathrm e}^{d x +c}+2 a}{2 \sqrt {a^{2}+b^{2}}}\right )}{d b \sqrt {a^{2}+b^{2}}}-\frac {a f \ln \left (\frac {-b \,{\mathrm e}^{d x +c}+\sqrt {a^{2}+b^{2}}-a}{-a +\sqrt {a^{2}+b^{2}}}\right ) x}{d b \sqrt {a^{2}+b^{2}}}-\frac {a f \ln \left (\frac {-b \,{\mathrm e}^{d x +c}+\sqrt {a^{2}+b^{2}}-a}{-a +\sqrt {a^{2}+b^{2}}}\right ) c}{d^{2} b \sqrt {a^{2}+b^{2}}}+\frac {a f \ln \left (\frac {b \,{\mathrm e}^{d x +c}+\sqrt {a^{2}+b^{2}}+a}{a +\sqrt {a^{2}+b^{2}}}\right ) x}{d b \sqrt {a^{2}+b^{2}}}+\frac {a f \ln \left (\frac {b \,{\mathrm e}^{d x +c}+\sqrt {a^{2}+b^{2}}+a}{a +\sqrt {a^{2}+b^{2}}}\right ) c}{d^{2} b \sqrt {a^{2}+b^{2}}}-\frac {a f \dilog \left (\frac {-b \,{\mathrm e}^{d x +c}+\sqrt {a^{2}+b^{2}}-a}{-a +\sqrt {a^{2}+b^{2}}}\right )}{d^{2} b \sqrt {a^{2}+b^{2}}}+\frac {a f \dilog \left (\frac {b \,{\mathrm e}^{d x +c}+\sqrt {a^{2}+b^{2}}+a}{a +\sqrt {a^{2}+b^{2}}}\right )}{d^{2} b \sqrt {a^{2}+b^{2}}}-\frac {2 a f c \arctanh \left (\frac {2 b \,{\mathrm e}^{d x +c}+2 a}{2 \sqrt {a^{2}+b^{2}}}\right )}{d^{2} b \sqrt {a^{2}+b^{2}}}\) \(440\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x+e)*sinh(d*x+c)/(a+b*sinh(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/2*f*x^2/b+e*x/b+2/d*a/b*e/(a^2+b^2)^(1/2)*arctanh(1/2*(2*b*exp(d*x+c)+2*a)/(a^2+b^2)^(1/2))-1/d*a/b*f/(a^2+b
^2)^(1/2)*ln((-b*exp(d*x+c)+(a^2+b^2)^(1/2)-a)/(-a+(a^2+b^2)^(1/2)))*x-1/d^2*a/b*f/(a^2+b^2)^(1/2)*ln((-b*exp(
d*x+c)+(a^2+b^2)^(1/2)-a)/(-a+(a^2+b^2)^(1/2)))*c+1/d*a/b*f/(a^2+b^2)^(1/2)*ln((b*exp(d*x+c)+(a^2+b^2)^(1/2)+a
)/(a+(a^2+b^2)^(1/2)))*x+1/d^2*a/b*f/(a^2+b^2)^(1/2)*ln((b*exp(d*x+c)+(a^2+b^2)^(1/2)+a)/(a+(a^2+b^2)^(1/2)))*
c-1/d^2*a/b*f/(a^2+b^2)^(1/2)*dilog((-b*exp(d*x+c)+(a^2+b^2)^(1/2)-a)/(-a+(a^2+b^2)^(1/2)))+1/d^2*a/b*f/(a^2+b
^2)^(1/2)*dilog((b*exp(d*x+c)+(a^2+b^2)^(1/2)+a)/(a+(a^2+b^2)^(1/2)))-2/d^2*a/b*f*c/(a^2+b^2)^(1/2)*arctanh(1/
2*(2*b*exp(d*x+c)+2*a)/(a^2+b^2)^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)*sinh(d*x+c)/(a+b*sinh(d*x+c)),x, algorithm="maxima")

[Out]

-1/2*(4*a*integrate(x*e^(d*x + c)/(b^2*e^(2*d*x + 2*c) + 2*a*b*e^(d*x + c) - b^2), x) - x^2/b)*f - (a*log((b*e
^(-d*x - c) - a - sqrt(a^2 + b^2))/(b*e^(-d*x - c) - a + sqrt(a^2 + b^2)))/(sqrt(a^2 + b^2)*b*d) - (d*x + c)/(
b*d))*e

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 532 vs. \(2 (199) = 398\).
time = 0.36, size = 532, normalized size = 2.42 \begin {gather*} \frac {{\left (a^{2} + b^{2}\right )} d^{2} f x^{2} + 2 \, {\left (a^{2} + b^{2}\right )} d^{2} x \cosh \left (1\right ) + 2 \, {\left (a^{2} + b^{2}\right )} d^{2} x \sinh \left (1\right ) - 2 \, a b f \sqrt {\frac {a^{2} + b^{2}}{b^{2}}} {\rm Li}_2\left (\frac {a \cosh \left (d x + c\right ) + a \sinh \left (d x + c\right ) + {\left (b \cosh \left (d x + c\right ) + b \sinh \left (d x + c\right )\right )} \sqrt {\frac {a^{2} + b^{2}}{b^{2}}} - b}{b} + 1\right ) + 2 \, a b f \sqrt {\frac {a^{2} + b^{2}}{b^{2}}} {\rm Li}_2\left (\frac {a \cosh \left (d x + c\right ) + a \sinh \left (d x + c\right ) - {\left (b \cosh \left (d x + c\right ) + b \sinh \left (d x + c\right )\right )} \sqrt {\frac {a^{2} + b^{2}}{b^{2}}} - b}{b} + 1\right ) - 2 \, {\left (a b c f - a b d \cosh \left (1\right ) - a b d \sinh \left (1\right )\right )} \sqrt {\frac {a^{2} + b^{2}}{b^{2}}} \log \left (2 \, b \cosh \left (d x + c\right ) + 2 \, b \sinh \left (d x + c\right ) + 2 \, b \sqrt {\frac {a^{2} + b^{2}}{b^{2}}} + 2 \, a\right ) + 2 \, {\left (a b c f - a b d \cosh \left (1\right ) - a b d \sinh \left (1\right )\right )} \sqrt {\frac {a^{2} + b^{2}}{b^{2}}} \log \left (2 \, b \cosh \left (d x + c\right ) + 2 \, b \sinh \left (d x + c\right ) - 2 \, b \sqrt {\frac {a^{2} + b^{2}}{b^{2}}} + 2 \, a\right ) - 2 \, {\left (a b d f x + a b c f\right )} \sqrt {\frac {a^{2} + b^{2}}{b^{2}}} \log \left (-\frac {a \cosh \left (d x + c\right ) + a \sinh \left (d x + c\right ) + {\left (b \cosh \left (d x + c\right ) + b \sinh \left (d x + c\right )\right )} \sqrt {\frac {a^{2} + b^{2}}{b^{2}}} - b}{b}\right ) + 2 \, {\left (a b d f x + a b c f\right )} \sqrt {\frac {a^{2} + b^{2}}{b^{2}}} \log \left (-\frac {a \cosh \left (d x + c\right ) + a \sinh \left (d x + c\right ) - {\left (b \cosh \left (d x + c\right ) + b \sinh \left (d x + c\right )\right )} \sqrt {\frac {a^{2} + b^{2}}{b^{2}}} - b}{b}\right )}{2 \, {\left (a^{2} b + b^{3}\right )} d^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)*sinh(d*x+c)/(a+b*sinh(d*x+c)),x, algorithm="fricas")

[Out]

1/2*((a^2 + b^2)*d^2*f*x^2 + 2*(a^2 + b^2)*d^2*x*cosh(1) + 2*(a^2 + b^2)*d^2*x*sinh(1) - 2*a*b*f*sqrt((a^2 + b
^2)/b^2)*dilog((a*cosh(d*x + c) + a*sinh(d*x + c) + (b*cosh(d*x + c) + b*sinh(d*x + c))*sqrt((a^2 + b^2)/b^2)
- b)/b + 1) + 2*a*b*f*sqrt((a^2 + b^2)/b^2)*dilog((a*cosh(d*x + c) + a*sinh(d*x + c) - (b*cosh(d*x + c) + b*si
nh(d*x + c))*sqrt((a^2 + b^2)/b^2) - b)/b + 1) - 2*(a*b*c*f - a*b*d*cosh(1) - a*b*d*sinh(1))*sqrt((a^2 + b^2)/
b^2)*log(2*b*cosh(d*x + c) + 2*b*sinh(d*x + c) + 2*b*sqrt((a^2 + b^2)/b^2) + 2*a) + 2*(a*b*c*f - a*b*d*cosh(1)
 - a*b*d*sinh(1))*sqrt((a^2 + b^2)/b^2)*log(2*b*cosh(d*x + c) + 2*b*sinh(d*x + c) - 2*b*sqrt((a^2 + b^2)/b^2)
+ 2*a) - 2*(a*b*d*f*x + a*b*c*f)*sqrt((a^2 + b^2)/b^2)*log(-(a*cosh(d*x + c) + a*sinh(d*x + c) + (b*cosh(d*x +
 c) + b*sinh(d*x + c))*sqrt((a^2 + b^2)/b^2) - b)/b) + 2*(a*b*d*f*x + a*b*c*f)*sqrt((a^2 + b^2)/b^2)*log(-(a*c
osh(d*x + c) + a*sinh(d*x + c) - (b*cosh(d*x + c) + b*sinh(d*x + c))*sqrt((a^2 + b^2)/b^2) - b)/b))/((a^2*b +
b^3)*d^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (e + f x\right ) \sinh {\left (c + d x \right )}}{a + b \sinh {\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)*sinh(d*x+c)/(a+b*sinh(d*x+c)),x)

[Out]

Integral((e + f*x)*sinh(c + d*x)/(a + b*sinh(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)*sinh(d*x+c)/(a+b*sinh(d*x+c)),x, algorithm="giac")

[Out]

integrate((f*x + e)*sinh(d*x + c)/(b*sinh(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\mathrm {sinh}\left (c+d\,x\right )\,\left (e+f\,x\right )}{a+b\,\mathrm {sinh}\left (c+d\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((sinh(c + d*x)*(e + f*x))/(a + b*sinh(c + d*x)),x)

[Out]

int((sinh(c + d*x)*(e + f*x))/(a + b*sinh(c + d*x)), x)

________________________________________________________________________________________